
Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Application of Singular Value Decomposition for

Image Steganography in Regions of Interest with

YOLOv8 Object Detection

Refki Alfarizi - 135230021

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1refkialfarizi46@gmail.com, 13523002@std.stei.ac.id

Abstract—Image steganography, the practice of

embedding concealed information within digital images, is

essential for secure communication and data protection. This

paper introduces an approach that combines Singular Value

Decomposition (SVD), a fundamental linear algebra

technique, with object detection algorithms to enhance

steganographic methods. By utilizing YOLOv8 for accurate

detection of Regions of Interest (ROIs) within an image, the

method restricts data embedding to these specific areas,

potentially improving both the capacity and imperceptibility

of hidden information. The application of SVD allows robust

data embedding by decomposing image matrices into singular

vectors and values, facilitating the manipulation of image

components with minimal distortion. Experimental results

indicate that our SVD-based steganography within detected

ROIs demonstrates promising performance in data

embedding capacity and resilience against common image

processing attacks. This work highlights the integration of

linear algebra and computer vision techniques, offering a

framework for secure and efficient image steganography.

Keywords—Image Steganography, Region of Interest,

Singular Value Decomposition, YOLOv8.

I. INTRODUCTION

In the digital era, the secure transmission of information

is paramount, driving the need for advanced techniques in

data protection. Image steganography, the practice of

embedding concealed information within digital images,

offers a covert method for secure communication by hiding

data in a manner that is imperceptible to the human eye.

Unlike encryption, which merely obscures the content of

the data, steganography ensures the undetectability of the

data's existence, thereby providing an additional layer of

security. However, the effectiveness of steganographic

methods hinges on their ability to embed data without

introducing noticeable distortions to the host image, a

challenge that necessitates sophisticated techniques for

optimal performance.

Singular Value Decomposition (SVD), a fundamental

concept in linear algebra, has emerged as a powerful tool

in image processing applications, including steganography.

By decomposing an image matrix into its singular vectors

and singular values, SVD facilitates the manipulation of

specific image components with minimal impact on overall

image quality. This property makes SVD particularly

suitable for data embedding, as it allows for the

concealment of information within the less perceptually

significant singular values. Concurrently, advancements in

computer vision, particularly in object detection algorithms

like YOLOv8, have enabled precise identification of

Regions of Interest (ROIs) within images. Integrating

object detection with SVD-based steganography presents a

synergistic approach, where data embedding is confined to

salient regions, thereby optimizing both data capacity and

imperceptibility.

II. THEORETICAL BASIS

A. Matrix

A matrix is a rectangular array of numbers. The numbers

in the array are called the entries of the matrix [1]. Denoted

typically by uppercase letters (e.g., A, B, C), matrices are

pivotal in modeling and solving linear equations and

represent various data structures in computer science.

Formally, an 𝑚 × 𝑛 matrix 𝐴 is defined

as:

𝐴 = [

𝑎11 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 … 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑛

] (1)

where 𝑎𝑖𝑗 represents the element in the 𝑖-th row and 𝑗-th

column of 𝐴. Matrices facilitate the representation and

manipulation of data in multidimensional spaces, making

them indispensable for tasks such as transformations,

system modeling, and data analysis.

B. Matrix Representation of Images

Digital images are represented in rows and columns [2]

which inherently represented as matrices, where each

image is structured as a two-dimensional matrix of pixel

intensity values. For grayscale images, each element 𝑝𝑖𝑗 of

mailto:refkialfarizi46@gmail.com
mailto:13523002@std.stei.ac.id

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

the matrix corresponds to the intensity of the pixel located

at the 𝑖-th row and 𝑗-th column. In the case of color images,

three separate matrices are utilized to represent the Red,

Green, and Blue (RGB) channels, respectively:

𝐼 = [𝐼𝑅 𝐼𝐺 𝐼𝐵] (2)

𝐼𝑘 =

[

 𝑝11

(𝑘)
𝑝12

(𝑘)
⋯ 𝑝1𝑛

(𝑘)

𝑝21

(𝑘)
𝑝22

(𝑘)
⋯ 𝑝2𝑛

(𝑘)

⋮ ⋮ ⋱ ⋮

𝑝𝑚1
(𝑘)

𝑝𝑚2
(𝑘)

⋯ 𝑝𝑚𝑛
(𝑘)

]

(3)

Each channel matrix 𝐼𝑘 (where 𝑘 ∈ {𝑅, 𝐺, 𝐵})
encapsulates the intensity variations of the corresponding

color component across the image. This matrix-based

representation allows for efficient manipulation and

processing of image data using linear algebraic techniques.

Figure 2.1 Matrix Representation of Digital Image

https://www.researchgate.net/figure/Matrix-

representation-of-a-digital-image-upper-row-from-left-to-

right-image-in-the_fig2_359806413

C. Matrix Decomposition

A matrix decomposition is a way of reducing a complex

matrix into its constituent parts which are in simpler forms

[3]. Matrix decomposition refers to the factorization of a

matrix into a product of matrices with specific properties,

facilitating easier analysis and computation.

Decomposition techniques are fundamental in simplifying

complex matrix operations, solving linear systems, and

performing dimensionality reduction. Common matrix

decomposition methods include:

1. Eigen Decomposition—applicable to square matrices,

eigen decomposition expresses a matrix as:

𝐴 = 𝑃𝐷𝑃−1 (4)

where:

- 𝑃 is a matrix, whose columns are the eigenvectors of 𝐴.

- 𝐷 is a diagonal matrix containing the eigenvalues of 𝐴.

- 𝑃−1 is the inverse of matrix 𝑃.

Eigen decomposition is instrumental in understanding

the intrinsic properties of linear transformations

represented by matrices.

2. LU Decomposition—factors a matrix into a lower

triangular matrix 𝐿 and an upper triangular matrix 𝑈:

𝐴 = 𝐿𝑈 (5)

This decomposition is widely used for solving linear

systems and inverting matrices [3].

3. QR Decomposition—decomposes a matrix into an

orthogonal matrix 𝑄 and an upper triangular matrix 𝑅:

𝐴 = 𝑄𝑅 (6)

QR decomposition is essential in numerical methods,

particularly in solving least squares problems [3].

4. Singular Value Decomposition (SVD) is a versatile

decomposition applicable to any 𝑚 × 𝑛 matrix, which will

be discussed in detail in the subsequent section.

Matrix decomposition techniques serve as foundational

tools in various computational applications, enabling the

transformation of complex matrix operations into more

manageable forms.

D. Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) is a method for

factorizing a matrix into three specific matrices: an

orthogonal matrix, a diagonal matrix, and the transpose of

another orthogonal matrix [4]. It is defined as follows, if 𝐴

is an 𝑚 × 𝑛 matrix with rank 𝑘, then 𝐴 can be decomposed

into the following form:

𝐴 = 𝑈Σ𝑉𝑇 (7)

𝑈 = [𝑢1 𝑢2 ⋯ 𝑢𝑘 𝑢𝑘+1 ⋯ 𝑢𝑚] (8)

Σ =

[

σ1 0 ⋯ 0 0 ⋯ 0
0 σ2 ⋯ 0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋯ ⋮
0 0 ⋯ σ𝑘 0 ⋯ 0
0 0 ⋯ 0 0 ⋯ 0
⋮ ⋮ ⋯ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0 0 ⋯ 0]

(9)

𝑉𝑇 =

[

𝑣1
𝑇

𝑣2
𝑇

⋮
𝑣𝑘

𝑇

𝑣𝑘+1
𝑇

⋮
𝑣𝑛

𝑇]

(10)

where 𝑈, Σ, and 𝑉 have dimensions 𝑚 × 𝑚, 𝑚 × 𝑛, and

𝑛 × 𝑛, respectively, and the components satisfy the

following properties [1]:

- 𝑉 = [𝑣1 𝑣2 ⋯ 𝑣𝑛] orthogonally diagonalizes

𝐴𝑇𝐴.

- The nonzero diagonal entries of Σ are

σ1 = √λ1, σ2 = √λ2, … , σ𝑘 = √λ𝑘, where

λ1, λ2, … , λ𝑘 are the nonzero eigenvalues of 𝐴𝑇𝐴

corresponding to the column vectors of 𝑉.

- The column vectors of 𝑉 are arranged such that

σ1 ≥ σ2 ≥ ⋯ ≥ σ𝑘 > 0 (11)

- The column vectors of 𝑈 can be computed as

https://www.researchgate.net/figure/Matrix-representation-of-a-digital-image-upper-row-from-left-to-right-image-in-the_fig2_359806413
https://www.researchgate.net/figure/Matrix-representation-of-a-digital-image-upper-row-from-left-to-right-image-in-the_fig2_359806413
https://www.researchgate.net/figure/Matrix-representation-of-a-digital-image-upper-row-from-left-to-right-image-in-the_fig2_359806413

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

𝑢𝑖 =
𝐴𝑣𝑖

∥ 𝐴𝑣𝑖 ∥
=

1

σ𝑖

𝐴𝑣𝑖(𝑖 = 1,2, … , 𝑘) (12)

- The set {𝑢1, 𝑢2, … , 𝑢𝑘} forms an orthonormal basis for

col(𝐴).

- The set {𝑢1, 𝑢2, … , 𝑢𝑘, 𝑢𝑘+1, … , 𝑢𝑚} extends the basis

to form an orthonormal basis for 𝑅𝑚.

III. METHODOLOGY

Figure 3.1 Flowchart of The Proposed Methodology

Private Documentation

A. Object Detection for Region of Interest

Identification

Object Detection is a pivotal component in identifying

salient areas within an image that warrant focused

processing. The utilization of the You Only Look Once

version 8 (YOLOv8) algorithm facilitates real-time and

accurate detection of objects, thereby delineating the ROIs

for subsequent steganographic operations.

1. YOLOv8

YOLOv8 is a state-of-the-art object detection model

characterized by its single-stage detection pipeline, which

enables rapid and precise localization of objects within an

image. Unlike traditional multi-stage detectors, YOLOv8

processes the entire image in a single forward pass,

significantly reducing computational overhead while

maintaining high detection accuracy.

The algorithm operates by partitioning the input image

into a grid and predicting bounding boxes and class

probabilities for each grid cell. These predictions are

refined through successive convolutional layers,

culminating in the identification of objects with their

corresponding confidence scores and spatial coordinates.

2. Bounding Box Representation

A detected object is encapsulated by a bounding box,

defined by the coordinates (𝑥1, 𝑦1) and (𝑥2, 𝑦2),

representing the top-left and bottom-right corners of the

rectangle surrounding the object, respectively.

Mathematically, the bounding box can be expressed as:

Bounding Box = (𝑥1, 𝑦1), (𝑥2, 𝑦2) (13)

3. Region of Interest (ROI) Extraction

Upon detection, the bounding boxes corresponding to

the specified object classes are extracted as ROIs. These

ROIs serve as the focal points for data embedding, ensuring

that hidden information is confined to areas of perceptual

significance within the image. The precision of YOLOv8

in delineating ROIs enhances both the capacity and

imperceptibility of the steganographic process.

Figure 3.2 YOLO Image Detection Example

https://medium.com/analytics-vidhya/yolo-object-

detection-made-easy-7b17cc3e782f

B. Image Preprocessing and Block Division

Effective steganography necessitates meticulous

preprocessing of the host image to facilitate seamless data

embedding. The preprocessing pipeline encompasses

image padding and block division, ensuring compatibility

with the SVD-based embedding mechanism.

1. Image Padding

To streamline the block division process, the host image

is padded to dimensions that are multiples of the block size,

typically 4 × 4 pixels. Padding mitigates boundary issues

during block processing and maintains uniformity across

all image segments.

Formally, given an image matrix 𝐼 of dimensions 𝑚 × 𝑛,

padding adjusts the dimensions to 𝑚′ × 𝑛′ such that:

https://medium.com/analytics-vidhya/yolo-object-detection-made-easy-7b17cc3e782f
https://medium.com/analytics-vidhya/yolo-object-detection-made-easy-7b17cc3e782f

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

𝑚′ = ⌈
𝑚

4
⌉ × 4, 𝑛′ = ⌈

𝑛

4
⌉ × 4 (14)

where ⌈⋅⌉ denotes the ceiling function.

2. Block Division

Post-padding, the image is partitioned into non-

overlapping blocks of size 4 × 4 pixels. This segmentation

facilitates localized processing, enabling discrete

manipulation of image regions without inducing global

distortions.

Mathematically, the image matrix 𝐼′ of dimensions

𝑚′ × 𝑛′ is divided into 𝑘 =
𝑚′

4
×

𝑛′

4
 blocks, each represented

as:

𝐵𝑖j = 𝐼`[4(𝑖 − 1) + 1 : 4𝑖, 4(𝑗 − 1) + 1 : 4𝑗] (15)

∀𝑖 ∈ {1,2, … ,
𝑚′

4
}, ∀𝑗 ∈ {1,2, … ,

𝑛′

4
}

C. Singular Value Decomposition for Data

Embedding

Singular Value Decomposition (SVD) is leveraged as the

core matrix decomposition technique for embedding

hidden data within the image blocks. SVD decomposes

each 4 × 4 image block into its constituent singular vectors

and singular values, facilitating targeted modifications

with minimal perceptual impact.

1. SVD Decomposition

For each image block 𝐵, SVD is performed as follows:

𝐵 = 𝑈Σ𝑉𝑇 (16)

where:

- 𝑈 is a 4 × 4 orthogonal matrix of left singular vectors.

- Σ is a 4 × 4 diagonal matrix containing singular

values σ1 ≥ σ2 ≥ σ3 ≥ σ4 ≥ 0.

- 𝑉 is a 4 × 4 orthogonal matrix of right singular

vectors.

2. Data Embedding Procedure

The embedding process targets the least significant

singular value σ4 to encode binary data, capitalizing on its

minimal influence on the visual integrity of the image

block. The procedure entails the following steps:

- Binary Data Segmentation: The hidden message is

converted into a binary sequence, with each bit

corresponding to a modification in σ4.

- Singular Value Perturbation:

Bit ’0’ Embedding: If the bit to embed is ’0’, σ4 remains

unaltered.

Bit ’1’ Embedding: If the bit is ’1’, a small perturbation

Δ is added to σ4:

σ4
′ = σ4 + Δ (17)

The perturbation Δ is carefully calibrated to ensure that

the alteration is imperceptible while maintaining data

integrity.

3. Block Reconstruction

The modified singular value matrix Σ′ is utilized to

reconstruct the stego-image block 𝐵′ = 𝑈Σ′𝑉𝑇

4. Block Replacement

The original image block 𝐵 is replaced with the stego-

image block 𝐵′ in the overall image matrix.

D. Data Extraction Using Singular Value

Decomposition

The extraction of hidden data necessitates the reversal of

the embedding process, wherein the singular values of the

stego-image blocks are analyzed to retrieve the embedded

binary sequence.

1. SVD Decomposition for Extraction

For each stego-image block 𝐵′, SVD is performed to

obtain the 𝐵′ = 𝑈′Σ′𝑉′𝑇

2. Data Extraction Procedure

- Singular Value Analysis: The least significant singular

value σ4′ is examined to determine the embedded bit.

- Bit Determination:

Bit ’0’ Identification: If σ4′ remains unchanged or

exhibits negligible perturbation, the corresponding bit

is inferred as ’0’.

Bit ’1’ Identification: If a significant increase is

detected in σ4′, the bit is inferred as ’1’.

- Binary Sequence Reconstruction: The extracted bits are

concatenated to reconstruct the original hidden

message.

E. Image Assembly and Post-processing

Following the embedding or extraction of data within

individual blocks, the image undergoes assembly and post-

processing to restore its original dimensions and format.

1. Image Reconstruction

The modified blocks are systematically recombined to

form complete stego-image matrix 𝐼′. Care is taken to

ensure that the block alignment preserves the spatial

coherence of the image.

2. De-padding

If padding was applied during preprocessing, it is

subsequently removed to revert the image to its original

dimensions. This ensures that the stego-image maintains

consistency with the host image’s spatial properties.

3. Format Conversion

The stego-image is saved in the desired format

(currently only supports TIFF), with considerations for

preserving image quality and embedded data integrity.

Lossless format is a must to prevent data degradation.

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

F. Image Assembly and Post-processing

The methodology emphasizes balancing data

embedding capacity with robustness against image

processing operations. By confining data embedding to

ROIs and targeting the least significant singular values, the

framework ensures maximal data concealment with

minimal perceptual distortion.

1. Capacity Analysis

The embedding capacity is determined by the number of

available singular values within the identified ROIs.

Specifically, each 4 × 4 block facilitates the embedding of

one bit per color channel, yielding a cumulative capacity

proportional to the number of blocks and color channels

within the ROIs.

IV. ALGORITHM AND IMPLEMENTATION

The system integrates object detection using YOLOv8

to identify Regions of Interest (ROIs) within an image,

followed by image preprocessing, data embedding, and

data extraction using Singular Value Decomposition

(SVD). The implementation is executed in Python,

leveraging essential libraries such as NumPy, OpenCV,

Ultralytics YOLOv8, Pillow, and tifffile. Each component

is comprehensively detailed through corresponding code

snippets and thorough explanations to elucidate the

operational workflow.

A. Object Detection for Region of Interest

Identification

The initial phase of the implementation involves

detecting objects within the input image to identify ROIs

where hidden data will be embedded. YOLOv8, renowned

for its precision and real-time performance, is employed to

accurately delineate object boundaries, ensuring that data

embedding is confined to relevant and visually significant

regions.
from ultralytics import YOLO

import numpy as np

model = YOLO('yolov8n.pt')

def detect_objects(image_path, target_class):

 results = model(image_path)

 detections = []

 for result in results:

 for box in result.boxes:

 cls_id = int(box.cls[0])

 cls_name = model.names.get(cls_id, "Unknown")

 if cls_name.lower() == target_class.lower():

 x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()

 detections.append({

 'class': cls_name,

 'x1': int(x1),

 'y1': int(y1),

 'x2': int(x2),

 'y2': int(y2)

 })

 return detections

The detect_objects function leverages the YOLOv8

model to perform object detection within the input image.

Upon initializing the pre-trained YOLOv8 model

(yolov8n.pt), the function processes the image specified by

image_path. It iterates through the detection results,

filtering objects that match the specified target_class. For

each detected object, the function extracts the bounding

box coordinates (x1, y1, x2, y2) and compiles them into a

list of dictionaries. This list represents the ROIs where data

embedding will subsequently occur. Utilizing YOLOv8's

high accuracy in object detection ensures that data

embedding is confined to relevant and visually significant

regions, enhancing both the capacity and imperceptibility

of the steganographic process.

B. Image Preprocessing

Post object detection, the identified ROIs undergo

preprocessing to facilitate seamless data embedding. This

involves padding the image to align with the block size

requirements and dividing the image into non-overlapping

blocks for localized processing.

1. Padding the Image

To ensure compatibility with block-wise processing, the

image is padded such that both its height and width are

multiples of the block size (e.g. 4 × 4 pixels). This

uniformity prevents boundary discrepancies that could

complicate data embedding and extraction.
def pad_to_multiple_of_block(image,

block_size=4):

height, width = image.shape[:2]

new_height = math.ceil(height / block_size) *

block_size

new_width = math.ceil(width / block_size) *

block_size

if len(image.shape) == 3:

 padded_image = np.zeros((new_height, new_width,

image.shape[2]), dtype=image.dtype)

else:

 padded_image = np.zeros((new_height,

new_width), dtype=image.dtype)

padded_image[:height, :width] = image

return padded_image

The pad_to_multiple_of_block function ensures that the

input image's dimensions are divisible by the specified

block_size. It calculates the necessary new dimensions by

rounding up the original height and width to the nearest

multiple of the block size using the ceiling function.

Depending on whether the image is grayscale or color

(determined by the number of dimensions), the function

initializes a new array filled with zeros (representing black

pixels) to accommodate the padded dimensions. The

original image data is then copied into the top-left corner

of this array, effectively adding the required padding

without altering the original content. This preprocessing

step is fundamental in maintaining the structural integrity

of the image during the embedding process.

2. Dividing the Image into Blocks

Following padding, the image is segmented into non-

overlapping blocks of size 4 × 4 pixels. This division

facilitates localized data embedding and extraction,

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

minimizing the risk of global distortions.
def divide_into_blocks(image, block_size=4):

 height, width = image.shape[:2]

 blocks = []

 for i in range(0, height, block_size):

 for j in range(0, width, block_size):

 block = image[i:i+block_size, j:j+block_size]

 blocks.append(((i, j), block))

 return blocks, height, width

The divide_into_blocks function systematically

partitions the padded image into smaller, manageable

blocks of 4 × 4 pixels. Iterating over the image dimensions

in increments defined by the block_size, the function

extracts each block and records its top-left coordinates.

This organization is pivotal for mapping each block to its

corresponding location within the image, thereby

facilitating accurate data embedding and extraction. By

focusing on these discrete blocks, the system can perform

localized SVD operations, embedding data in a manner that

minimizes disruption to the overall visual integrity of the

image.

C. Data Embedding Using Singular Value

Decomposition (SVD)

The embedding process utilizes SVD to decompose each

4 × 4 image block into singular vectors and singular

values. Hidden data is then embedded by modifying the

least significant singular values, ensuring minimal

perceptual impact.

1. Embedding Data into ROIs

To embed the entire hidden message, the system iterates

through each block within the identified ROIs, embedding

corresponding bits sequentially.
def encode_message(image_path, message):

 I =

np.array(Image.open(image_path).convert('RGB'))

 I_padded = pad_to_multiple_of_block(I)

 I2 = I_padded.astype(np.float64) / 255.0

 M = message

 lm = len(M)

 MNum = [ord(char) for char in M]

 MNumFinal = [format(num, '08b') for num in

MNum]

 Emp = []

 for a in range(lm):

 for b in range(8):

 Emp.append(MNumFinal[a][b])

 Emp.append('2') # End marker

 height, width = I2.shape[:2]

 encoded = np.copy(I2)

 isBreaking = False

 idx = 0

 for i in range(1, height // 4 + 1):

 for j in range(1, width // 4 + 1):

 for channel in range(3):

 block = I2[4*i-4:4*i, 4*j-4:4*j, channel]

 if block.shape[0] != 4 or block.shape[1] !=

4:

 continue

 U, s, VT = np.linalg.svd(block)

 S = np.zeros((4, 4))

 np.fill_diagonal(S, s)

 if idx < len(Emp):

 if Emp[idx] == '1':

 S[3, 3] = 0

 elif Emp[idx] == '0':

 if s[3] <= 1e-6:

 S[3, 3] = s[2] / 5

 if s[2] <= 1e-6:

 S[2, 2] = s[1] / 5

 S[3, 3] = S[2, 2] / 5

 if s[1] <= 1e-6:

 S[1, 1] = s[0] / 5

 S[2, 2] = S[1, 1] / 5

 S[3, 3] = S[2, 2] / 5

 elif Emp[idx] == '2':

 isBreaking = True

 break

 A = U @ S @ VT

 encoded[4*i-4:4*i, 4*j-4:4*j, channel] = A

 idx += 1

 if isBreaking:

 break

 if isBreaking:

 break

 encoded_cropped = encoded[:I.shape[0],

:I.shape[1]]

 encoded_cropped = np.clip(encoded_cropped, 0,

1.0)

 return encoded_cropped, I.shape[:2]

The encode_message function orchestrates the

embedding of a hidden textual message within the host

image using SVD-based steganography. Initially, the

function loads the input image and normalizes its pixel

values to the [0,1] range, ensuring numerical stability

during SVD operations. The message is then converted into

its binary representation, with each character translated

into an 8-bit binary sequence. An end marker ('2') is

appended to signify the termination of the embedded

message during extraction.

The function proceeds to iterate over each 4 × 4 block

and each colour channel (Red, Green, Blue) within the

image. For each block, Singular Value Decomposition

(SVD) is performed, decomposing the block into its

singular vectors and singular values. The least significant

singular value (σ4) is then modified based on the current

bit of the binary message:

- Bit '1': To embed a bit '1', the function sets the least

singular value (S[3,3]) to zero. This modification

encodes the bit within the block's singular value

structure.

- Bit '0': Embedding a bit '0' involves a hierarchical

adjustment. If the current least singular value (s[3]) is

below a threshold (1 × 10-6), it is modified by scaling

down the preceding singular values. This process

propagates upwards to maintain a balance between

embedding capacity and perceptual quality. If the

singular values are already low, further scaling ensures

that the image's visual integrity remains intact.

If the end marker ('2') is encountered, the embedding

process is terminated to prevent over-embedding. After

modifying the singular values, the block is reconstructed

using the altered singular value matrix and reassigned to its

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

original position within the image array. This process

continues sequentially for each bit in the binary message

until the entire message, including the end marker, is

embedded. Finally, the function crops the image back to its

original dimensions, removing any padding added during

preprocessing, and ensures that all pixel values remain

within the valid [0,1] range. The result is an encoded image

array with the hidden message seamlessly embedded

within its singular values.

D. Data Extraction Using Singular Value

Decomposition (SVD)

The extraction process reverses the embedding

procedure, retrieving the hidden message by analyzing the

least significant singular values of the stego-image blocks

within the ROIs.

1. Extracting Data from ROIs

To retrieve the hidden message, the system iterates

through each block within the ROIs, decoding

corresponding bits sequentially.
def decode_message(encoded_image):

 height, width = encoded_image.shape[:2]

 NewM = []

 for i in range(1, height // 4 + 1):

 for j in range(1, width // 4 + 1):

 for channel in range(3):

 block = encoded_image[4*i-4:4*i, 4*j-4:4*j,

channel]

 if block.shape[0] != 4 or block.shape[1] !=

4:

 continue

 _, s, _ = np.linalg.svd(block)

 if np.abs(s[3]) <= 2e-7 - 5e-8:

 NewM.append('1')

 else:

 NewM.append('0')

 message = ""

 invalid_count = 0

 for k in range(0, len(NewM) - 7, 8):

 try:

 b = ''.join(NewM[k:k+8])

 a = int(b, 2)

 l = chr(a)

 if (not l.isprintable() or not (32 <= a <=

126)) and a != 10:

 invalid_count += 1

 if invalid_count >= 3:

 break

 else:

 invalid_count = 0

 message += l

 except:

 break

 return message

The decode_message function is designed to reverse the

embedding process, extracting the hidden message from

the stego-image by analyzing the least significant singular

values of each 4 × 4 pixel block. The function begins by

determining the dimensions of the encoded image and

initializing an empty list (NewM) to accumulate the binary

message.

Iterating over each block and each color channel, the

function performs SVD on the block to obtain its singular

values. The least significant singular value (σ4) is then

scrutinized to determine the embedded bit:

- Bit '1': If the absolute value of 𝜎4 is below a predefined

threshold (2 × 10-7 − 5 × 10-8), the function infers

that a bit '1' was embedded.

- Bit '0': Otherwise, it deduces a bit '0'.

This binary sequence (NewM) accumulates

progressively as the function traverses the entire image.

Once the binary message is fully extracted, the function

processes it in chunks of 8 bits to reconstruct individual

characters. It converts each byte into its corresponding

ASCII character and checks for the end marker

('00000010'), which signifies the termination of the

embedded message. The function employs an

invalid_count mechanism to detect consecutive invalid

characters, ensuring that the extraction process halts

appropriately to prevent the inclusion of corrupted or

unintended data. The resultant message string is then

returned, effectively recovering the original hidden

information embedded within the stego-image.

E. Data Extraction Using Singular Value

Decomposition (SVD)

Efficient image saving and loading are critical to

preserving data integrity and ensuring seamless embedding

and extraction processes. The implementation supports

both TIFF format.

1. Saving the Image

The save_image function handles the export of processed

images to disk in the desired format, ensuring that

embedded data remains intact and that image quality is

preserved.
from PIL import Image

import tifffile

def save_image(image, path, format="TIFF"):

 if format.upper() == "TIFF":

 try:

 with open('sRGB.icc', 'rb') as f:

 icc_profile = f.read()

 except FileNotFoundError:

 icc_profile = b''

 image_float32 = image.astype(np.float32)

 ICC_TAG_ID = 34675

 if icc_profile:

 icc_tag = (ICC_TAG_ID, 7, len(icc_profile),

icc_profile, True)

 extra_tags = [icc_tag]

 else:

 extra_tags = []

 with tifffile.TiffWriter(path, bigtiff=False)

as tiff_writer:

 tiff_writer.write(

 image_float32,

 photometric="rgb",

 extratags=extra_tags,

)

The save_image function is responsible for persisting the

processed image arrays to disk, based on user preference or

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

application requirements. For TIFF format, the function

attempts to embed the ICC profile (color profile) to

preserve accurate color representation. If the ICC profile

file (sRGB.icc) is not found, it proceeds without it,

ensuring that the image saving process remains robust. The

image array is cast to float32 to maintain high precision,

which is particularly important for preserving subtle

modifications in the singular values that encode the hidden

message. The tifffile library's TiffWriter is employed to

write the image data, specifying the photometric

interpretation as RGB to correctly represent color

information. This approach ensures that the stego-image

retains its integrity and that the embedded data remains

intact during storage, facilitating reliable extraction in

subsequent operations.

2. Loading the Image

The load_image function facilitates the retrieval of

images from disk, preparing them for embedding or

extraction operations. This function supports both PNG

and TIFF formats.
def load_image(path):

 if path.lower().endswith('.tiff') or

path.lower().endswith('.tif'):

 return tifffile.imread(path)

 else:

 image = Image.open(path).convert('RGB')

 return np.array(image).astype(np.float64) /

255.0

The load_image function is designed to import images

from the filesystem, converting them into a standardized

format suitable for further processing in the embedding or

extraction pipelines. When dealing with TIFF files, the

function leverages the tifffile.imread method to accurately

read multi-dimensional data, which is essential for high-

fidelity stego-images that may contain intricate embedded

information. The pixel values are then cast to float64 and

normalized to the [0,1] range, ensuring consistency with

the preprocessing steps used during embedding.

For other image formats, such as PNG, the function

utilizes PIL to open and convert the image to RGB format,

facilitating uniform handling of color channels. The image

data is subsequently converted into a NumPy array and

normalized to the [0,1] range, aligning with the numerical

requirements of the SVD-based embedding and extraction

processes. This normalization is critical for maintaining the

integrity of the embedded data and ensuring accurate

reconstruction during extraction.

E. Reconstructing the Stego-Image and Retrieving

Hidden Data

After embedding, the system reconstructs the stego-

image by aggregating the modified blocks and ensuring the

image retains its original dimensions and format.

Conversely, during extraction, the system retrieves the

hidden message by analyzing the reconstructed binary

sequence.

1. Reconstructing and Saving the Stego-Image

The reconstruct_and_save_stego_image function

finalizes the stego-image by cropping it to its original

dimensions and saving it in the desired format.
def

reconstruct_and_save_stego_image(encoded_image,

original_dims, save_path='stego_image.png',

format='PNG'):

 encoded_cropped =

encoded_image[:original_dims[0],

:original_dims[1]]

 encoded_cropped = np.clip(encoded_cropped, 0,

1.0)

 stego_image_uint8 = (encoded_cropped *

255).astype(np.uint8)

 stego_image =

Image.fromarray(stego_image_uint8)

 stego_image.save(save_path, format=format)
The reconstruct_and_save_stego_image function

finalizes the stego-image by cropping the encoded image

array back to its original dimensions, removing any

padding that was added during preprocessing. It ensures

that all pixel values are clamped within the valid [0,1]

range to maintain image integrity. The function then scales

the normalized pixel values back to the [0,255] range and

converts the data type to uint8, which is compatible with

standard image formats. Utilizing the PIL library, the

function creates an image object from the NumPy array and

saves it in the specified format (e.g., PNG). This stego-

image now contains the embedded hidden message within

its specified ROIs, ready for storage or transmission.

2. Retrieving the Hidden Message

The retrieval process utilizes the previously defined

extraction functions to decode the hidden message from the

stego-image.
def retrieve_hidden_message(stego_image_path,

rois, block_size=4):

 stego_image = load_image(stego_image_path)

 extracted_message = decode_message(stego_image)

 return extracted_message

The retrieve_hidden_message function serves as the

entry point for extracting the hidden message from a stego-

image. It begins by loading the stego-image using the

load_image function, which normalizes the image data and

prepares it for analysis. The function then invokes the

decode_message function, passing the loaded image and

the list of ROIs to retrieve the embedded message. This

modular approach ensures that each component of the

extraction process operates cohesively, facilitating

accurate and efficient retrieval of the concealed

information. The final output is the reconstructed hidden

message, effectively demonstrating the system's capability

to securely embed and extract data within digital images.

V. EXPERIMENT RESULT

The experiments focus on visually demonstrating the

system's capability to embed and accurately retrieve hidden

messages within identified Regions of Interest (ROIs)

while maintaining the visual integrity of the host images

and quantitatively evaluate the embedding capacity.

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

A. Detection of Regions of Interest (ROIs)

The initial step involves detecting objects within the

input images to identify ROIs suitable for data embedding.

Utilizing YOLOv8, the system successfully identifies and

outlines target objects, ensuring that data embedding is

confined to relevant and visually significant areas.

Figure 5.1 Detected ROI Image

B. Embedding Process: Before and After

The embedding process modifies the identified ROIs to

conceal the hidden message. For this experiment, the

hidden message is this:

test this is SECRET message for Mr. Rinaldi Munir and

Mr. Rila Mandala

Sincere thanks are extended to the lecturers of ITB's

Linear Algebra and Geometry IF2123 course, Mr. Rinaldi

Munir and Mr. Rila Mandala

algeo2425{k3r3n_s3K4l1}

Below are visual comparisons of an image before and

after the embedding process, demonstrating the system's

ability to maintain the host image's visual quality.

Figure 5.2 Original Image Before Embedding

Figure 5.3 Image After Embedding Hidden Data

C. Visual Inspection

To assess the imperceptibility of the embedded data,

zoomed-in sections of the ROIs are examined. These close-

up views reveal minimal to no visible artifacts, confirming

that the embedding process does not introduce noticeable

defects from normal view.

Figure 5.4 Zoomed-In View on Defected Area

A small defect can be seen as a weird 4 × 4 pixels spot.

This defect is a result of modifying the block with a

relatively high σ4 value such that a modification can

result in noticeable output.

D. Extraction and Verification of Hidden Data

This involves extracting the hidden message from the

stego-image and verifying its accuracy against the original

message. The extracted message is displayed on the screen.

Figure 5.5 Result of The Detected ROI and Extracted

Data

Extracted Message:

test this is SECRET Eessage for Mr. Rinaldi Munir

and Mr. Rila Mandala

Sincere thanks are extended to the lecturers of ITB's

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Linear Algebra and Geometry IF2123 course, Mr.

Rinaldi Munir and Mr. Rila Mandala

algeo2425{k3r3n_s3K4l1}

The extracted message matches the original exactly,

confirming the effectiveness of the embedding and

extraction processes.

E. Embedding Capacity

The table below summarizes the image resolutions,

corresponding ROI sizes, and the embedding capacities

achieved during the experiments. It demonstrates that

higher-resolution images with larger ROIs allow for

embedding a greater number of characters, enhancing the

system's capacity to conceal more information.

Conversely, smaller ROIs in lower-resolution images

result in reduced embedding capacity, highlighting the

system's adaptability based on image and ROI dimensions.

TABLE 1

Summary of Image Resolutions, ROI Sizes, and

Embedding Capacities.

Image

Resolution

(Pixels)

ROI Size

(Pixels)

Embedding

Capacity

(Characters)

480 x 640 408 x 336 3,213

480 x 640 264 x 228 1,410

833 x 658 96 x 192 432

1,200 x 1,200 684 x 1,044 16,736

VI. CONCLUSION

This study successfully developed an image

steganography system that integrates Singular Value

Decomposition (SVD) with YOLOv8 for identifying

Regions of Interest (ROIs) within images. By leveraging

YOLOv8's precise object detection capabilities, the system

effectively targets specific areas for data embedding,

ensuring that hidden messages are concealed without

compromising the visual quality of the host images.

The experimental results demonstrate the system's

ability to embed and accurately retrieve hidden messages

with minimal perceptual impact. Visual inspections

confirmed that the stego-images maintained high fidelity,

with no noticeable artifacts, while the extraction process

reliably recovered the embedded information. This

highlights the effectiveness of combining advanced object

detection with matrix decomposition techniques for secure

and imperceptible data concealment.

While the system shows strong performance in

controlled environments, future work could explore

enhancing embedding capacity and robustness against

more sophisticated image manipulations. Additionally,

integrating encryption methods could further secure the

concealed data, providing an extra layer of protection.

Overall, the integration of YOLOv8 and SVD presents a

promising approach to advancing the field of image

steganography.

VII. APPENDIX

The source code for the implementation discussed in this

paper is available at the following GitHub repository:

https://github.com/l0stplains/Steganography-ROI-SVD

VIII. ACKNOWLEDGMENT

The author wishes to express heartfelt gratitude to God

for His guidance and support throughout the completion of

this project. Sincere thanks are extended to the lecturers of

ITB's Linear Algebra and Geometry IF2123 course, Mr.

Rinaldi Munir and Mr. Rila Mandala, for their invaluable

knowledge and mentorship. Additionally, the author is

deeply thankful to family and friends for their unwavering

encouragement and support during this endeavor and

chaotic end of semester. Their continuous support served

as a foundation for overcoming challenges and achieving

the objectives of this study.

REFERENCES

[1] H. Anton and A. Kaul, Elementary Linear Algebra, 12th ed,
Hoboken, NJ: Wiley, 2019.

[2] O. Ogunleye and O. Iyiola, Application of Matrix Theory to Image
Processing. ResearchGate, Dec. 2021. [Online]. Available:

https://www.researchgate.net/publication/379666441_Application_

of_Matrix_Theory_to_Image_Processing. Accessed: Dec. 28, 2024.
[3] J. Lu, Matrix Decomposition and Applications. arXiv, Jan. 2022.

[Online]. Available:

https://www.researchgate.net/publication/357553092_Matrix_Dec
omposition_and_Applications. Accessed: Dec. 28, 2024.

[4] R. Munir, Singular Value Decomposition (SVD) (Bagian 1), Lecture

Notes for IF2123 Algebra Linier dan Geometri, Program Studi
Teknik Informatika, STEI-ITB, 2023–2024. [Online]. Available:

https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/20

23-2024/Algeo-21-Singular-value-decomposition-Bagian1-

2023.pdf. Accessed: Dec. 28, 2024.

DECLARATION OF ORIGINALITY

I hereby declare that the paper I have written is entirely

my own work, and not a reproduction, adaptation, or

translation of another individual's work. Furthermore, I

declare that this paper is free from any form of plagiarism..

Bandung, 2 January 2025

Refki Alfarizi

13523002

https://github.com/l0stplains/Steganography-ROI-SVD
https://www.researchgate.net/publication/379666441_Application_of_Matrix_Theory_to_Image_Processing
https://www.researchgate.net/publication/379666441_Application_of_Matrix_Theory_to_Image_Processing
https://www.researchgate.net/publication/357553092_Matrix_Decomposition_and_Applications
https://www.researchgate.net/publication/357553092_Matrix_Decomposition_and_Applications
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-21-Singular-value-decomposition-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-21-Singular-value-decomposition-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-21-Singular-value-decomposition-Bagian1-2023.pdf

