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Abstract—Image steganography, the practice of 

embedding concealed information within digital images, is 

essential for secure communication and data protection. This 

paper introduces an approach that combines Singular Value 

Decomposition (SVD), a fundamental linear algebra 

technique, with object detection algorithms to enhance 

steganographic methods. By utilizing YOLOv8 for accurate 

detection of Regions of Interest (ROIs) within an image, the 

method restricts data embedding to these specific areas, 

potentially improving both the capacity and imperceptibility 

of hidden information. The application of SVD allows robust 

data embedding by decomposing image matrices into singular 

vectors and values, facilitating the manipulation of image 

components with minimal distortion. Experimental results 

indicate that our SVD-based steganography within detected 

ROIs demonstrates promising performance in data 

embedding capacity and resilience against common image 

processing attacks. This work highlights the integration of 

linear algebra and computer vision techniques, offering a 

framework for secure and efficient image steganography. 

 

Keywords—Image Steganography, Region of Interest, 

Singular Value Decomposition, YOLOv8. 

 

 

I.   INTRODUCTION 

In the digital era, the secure transmission of information 

is paramount, driving the need for advanced techniques in 

data protection. Image steganography, the practice of 

embedding concealed information within digital images, 

offers a covert method for secure communication by hiding 

data in a manner that is imperceptible to the human eye. 

Unlike encryption, which merely obscures the content of 

the data, steganography ensures the undetectability of the 

data's existence, thereby providing an additional layer of 

security. However, the effectiveness of steganographic 

methods hinges on their ability to embed data without 

introducing noticeable distortions to the host image, a 

challenge that necessitates sophisticated techniques for 

optimal performance. 

Singular Value Decomposition (SVD), a fundamental 

concept in linear algebra, has emerged as a powerful tool 

in image processing applications, including steganography. 

By decomposing an image matrix into its singular vectors 

and singular values, SVD facilitates the manipulation of 

specific image components with minimal impact on overall 

image quality. This property makes SVD particularly 

suitable for data embedding, as it allows for the 

concealment of information within the less perceptually 

significant singular values. Concurrently, advancements in 

computer vision, particularly in object detection algorithms 

like YOLOv8, have enabled precise identification of 

Regions of Interest (ROIs) within images. Integrating 

object detection with SVD-based steganography presents a 

synergistic approach, where data embedding is confined to 

salient regions, thereby optimizing both data capacity and 

imperceptibility. 

 

 

II. THEORETICAL BASIS 

A. Matrix 

A matrix is a rectangular array of numbers. The numbers 

in the array are called the entries of the matrix [1]. Denoted 

typically by uppercase letters (e.g., A, B, C), matrices are 

pivotal in modeling and solving linear equations and 

represent various data structures in computer science. 

Formally, an 𝑚 × 𝑛 matrix 𝐴 is defined 

as:

𝐴 = [

𝑎11 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 … 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑛

] (1) 

where 𝑎𝑖𝑗  represents the element in the 𝑖-th row and 𝑗-th 

column of 𝐴. Matrices facilitate the representation and 

manipulation of data in multidimensional spaces, making 

them indispensable for tasks such as transformations, 

system modeling, and data analysis. 

 

B. Matrix Representation of Images 

Digital images are represented in rows and columns [2] 

which inherently represented as matrices, where each 

image is structured as a two-dimensional matrix of pixel 

intensity values. For grayscale images, each element 𝑝𝑖𝑗  of 
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the matrix corresponds to the intensity of the pixel located 

at the 𝑖-th row and 𝑗-th column. In the case of color images, 

three separate matrices are utilized to represent the Red, 

Green, and Blue (RGB) channels, respectively: 

𝐼 = [𝐼𝑅 𝐼𝐺 𝐼𝐵] (2) 

𝐼𝑘 =

[
 
 
 
 𝑝11

(𝑘)
𝑝12

(𝑘)
⋯ 𝑝1𝑛

(𝑘)

𝑝21

(𝑘)
𝑝22

(𝑘)
⋯ 𝑝2𝑛

(𝑘)

⋮ ⋮ ⋱ ⋮

𝑝𝑚1
(𝑘)

𝑝𝑚2
(𝑘)

⋯ 𝑝𝑚𝑛
(𝑘)

]
 
 
 
 

(3) 

Each channel matrix 𝐼𝑘 (where 𝑘 ∈ {𝑅, 𝐺, 𝐵}) 
encapsulates the intensity variations of the corresponding 

color component across the image. This matrix-based 

representation allows for efficient manipulation and 

processing of image data using linear algebraic techniques. 

 
Figure 2.1 Matrix Representation of Digital Image 

https://www.researchgate.net/figure/Matrix-

representation-of-a-digital-image-upper-row-from-left-to-

right-image-in-the_fig2_359806413 

 

C. Matrix Decomposition 

A matrix decomposition is a way of reducing a complex 

matrix into its constituent parts which are in simpler forms 

[3]. Matrix decomposition refers to the factorization of a 

matrix into a product of matrices with specific properties, 

facilitating easier analysis and computation. 

Decomposition techniques are fundamental in simplifying 

complex matrix operations, solving linear systems, and 

performing dimensionality reduction. Common matrix 

decomposition methods include: 

1. Eigen Decomposition—applicable to square matrices, 

eigen decomposition expresses a matrix as: 

𝐴 = 𝑃𝐷𝑃−1 (4) 

where:  

- 𝑃 is a matrix, whose columns are the eigenvectors of 𝐴. 

- 𝐷 is a diagonal matrix containing the eigenvalues of 𝐴. 

- 𝑃−1 is the inverse of matrix 𝑃. 

Eigen decomposition is instrumental in understanding 

the intrinsic properties of linear transformations 

represented by matrices. 

2. LU Decomposition—factors a matrix into a lower 

triangular matrix 𝐿 and an upper triangular matrix 𝑈: 

𝐴 = 𝐿𝑈 (5) 

This decomposition is widely used for solving linear 

systems and inverting matrices [3]. 

3. QR Decomposition—decomposes a matrix into an 

orthogonal matrix 𝑄 and an upper triangular matrix 𝑅: 

𝐴 = 𝑄𝑅 (6) 

QR decomposition is essential in numerical methods, 

particularly in solving least squares problems [3]. 

4. Singular Value Decomposition (SVD) is a versatile 

decomposition applicable to any 𝑚 × 𝑛 matrix, which will 

be discussed in detail in the subsequent section. 

Matrix decomposition techniques serve as foundational 

tools in various computational applications, enabling the 

transformation of complex matrix operations into more 

manageable forms. 

 

D. Singular Value Decomposition (SVD) 

Singular Value Decomposition (SVD) is a method for 

factorizing a matrix into three specific matrices: an 

orthogonal matrix, a diagonal matrix, and the transpose of 

another orthogonal matrix [4]. It is defined as follows, if 𝐴 

is an 𝑚 × 𝑛 matrix with rank 𝑘, then 𝐴 can be decomposed 

into the following form: 

𝐴 = 𝑈Σ𝑉𝑇 (7) 

𝑈 = [𝑢1 𝑢2 ⋯ 𝑢𝑘 𝑢𝑘+1 ⋯ 𝑢𝑚] (8) 

Σ =

[
 
 
 
 
 
 
σ1 0 ⋯ 0 0 ⋯ 0
0 σ2 ⋯ 0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋯ ⋮
0 0 ⋯ σ𝑘 0 ⋯ 0
0 0 ⋯ 0 0 ⋯ 0
⋮ ⋮ ⋯ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0 0 ⋯ 0]

 
 
 
 
 
 

(9) 

𝑉𝑇 =

[
 
 
 
 
 
 
 

𝑣1
𝑇

𝑣2
𝑇

⋮
𝑣𝑘

𝑇

𝑣𝑘+1
𝑇

⋮
𝑣𝑛

𝑇 ]
 
 
 
 
 
 
 

(10) 

where 𝑈, Σ, and 𝑉 have dimensions 𝑚 × 𝑚, 𝑚 × 𝑛, and 

𝑛 × 𝑛, respectively, and the components satisfy the 

following properties [1]: 

- 𝑉 = [𝑣1 𝑣2 ⋯ 𝑣𝑛] orthogonally diagonalizes 

𝐴𝑇𝐴. 

- The nonzero diagonal entries of Σ are 

σ1 = √λ1, σ2 = √λ2, … , σ𝑘 = √λ𝑘, where 

λ1, λ2, … , λ𝑘 are the nonzero eigenvalues of 𝐴𝑇𝐴 

corresponding to the column vectors of 𝑉. 

- The column vectors of 𝑉 are arranged such that  

σ1 ≥ σ2 ≥ ⋯ ≥ σ𝑘 > 0 (11) 

- The column vectors of 𝑈 can be computed as 

https://www.researchgate.net/figure/Matrix-representation-of-a-digital-image-upper-row-from-left-to-right-image-in-the_fig2_359806413
https://www.researchgate.net/figure/Matrix-representation-of-a-digital-image-upper-row-from-left-to-right-image-in-the_fig2_359806413
https://www.researchgate.net/figure/Matrix-representation-of-a-digital-image-upper-row-from-left-to-right-image-in-the_fig2_359806413
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𝑢𝑖 =
𝐴𝑣𝑖

∥ 𝐴𝑣𝑖 ∥
=

1

σ𝑖

𝐴𝑣𝑖(𝑖 = 1,2, … , 𝑘) (12) 

- The set {𝑢1, 𝑢2, … , 𝑢𝑘} forms an orthonormal basis for 

col(𝐴). 

- The set {𝑢1, 𝑢2, … , 𝑢𝑘, 𝑢𝑘+1, … , 𝑢𝑚} extends the basis 

to form an orthonormal basis for 𝑅𝑚. 

 

 

III.   METHODOLOGY 

 

 
Figure 3.1 Flowchart of The Proposed Methodology  

Private Documentation 

A. Object Detection for Region of Interest 

Identification 

Object Detection is a pivotal component in identifying 

salient areas within an image that warrant focused 

processing. The utilization of the You Only Look Once 

version 8 (YOLOv8) algorithm facilitates real-time and 

accurate detection of objects, thereby delineating the ROIs 

for subsequent steganographic operations. 

1. YOLOv8 

YOLOv8 is a state-of-the-art object detection model 

characterized by its single-stage detection pipeline, which 

enables rapid and precise localization of objects within an 

image. Unlike traditional multi-stage detectors, YOLOv8 

processes the entire image in a single forward pass, 

significantly reducing computational overhead while 

maintaining high detection accuracy. 

The algorithm operates by partitioning the input image 

into a grid and predicting bounding boxes and class 

probabilities for each grid cell. These predictions are 

refined through successive convolutional layers, 

culminating in the identification of objects with their 

corresponding confidence scores and spatial coordinates. 

2. Bounding Box Representation 

A detected object is encapsulated by a bounding box, 

defined by the coordinates (𝑥1, 𝑦1) and (𝑥2, 𝑦2), 

representing the top-left and bottom-right corners of the 

rectangle surrounding the object, respectively. 

Mathematically, the bounding box can be expressed as: 

Bounding Box = (𝑥1, 𝑦1), (𝑥2, 𝑦2) (13) 

3. Region of Interest (ROI) Extraction 

Upon detection, the bounding boxes corresponding to 

the specified object classes are extracted as ROIs. These 

ROIs serve as the focal points for data embedding, ensuring 

that hidden information is confined to areas of perceptual 

significance within the image. The precision of YOLOv8 

in delineating ROIs enhances both the capacity and 

imperceptibility of the steganographic process. 

 
Figure 3.2 YOLO Image Detection Example 

https://medium.com/analytics-vidhya/yolo-object-

detection-made-easy-7b17cc3e782f 

 

B. Image Preprocessing and Block Division 

Effective steganography necessitates meticulous 

preprocessing of the host image to facilitate seamless data 

embedding. The preprocessing pipeline encompasses 

image padding and block division, ensuring compatibility 

with the SVD-based embedding mechanism. 

1. Image Padding 

To streamline the block division process, the host image 

is padded to dimensions that are multiples of the block size, 

typically 4 × 4 pixels. Padding mitigates boundary issues 

during block processing and maintains uniformity across 

all image segments. 

Formally, given an image matrix 𝐼 of dimensions 𝑚 × 𝑛, 

padding adjusts the dimensions to 𝑚′ × 𝑛′ such that: 

https://medium.com/analytics-vidhya/yolo-object-detection-made-easy-7b17cc3e782f
https://medium.com/analytics-vidhya/yolo-object-detection-made-easy-7b17cc3e782f
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𝑚′ = ⌈
𝑚

4
⌉ × 4, 𝑛′ = ⌈

𝑛

4
⌉ × 4 (14) 

where ⌈⋅⌉ denotes the ceiling function. 

2. Block Division 

Post-padding, the image is partitioned into non-

overlapping blocks of size 4 × 4 pixels. This segmentation 

facilitates localized processing, enabling discrete 

manipulation of image regions without inducing global 

distortions. 

Mathematically, the image matrix 𝐼′ of dimensions 

𝑚′ × 𝑛′ is divided into 𝑘 =
𝑚′

4
×

𝑛′

4
 blocks, each represented 

as: 

𝐵𝑖j = 𝐼`[4(𝑖 − 1) + 1 : 4𝑖, 4(𝑗 − 1) + 1 : 4𝑗] (15) 

∀𝑖 ∈ {1,2, … ,
𝑚′

4
}, ∀𝑗 ∈ {1,2, … ,

𝑛′

4
} 

 

C. Singular Value Decomposition for Data 

Embedding 

Singular Value Decomposition (SVD) is leveraged as the 

core matrix decomposition technique for embedding 

hidden data within the image blocks. SVD decomposes 

each 4 × 4 image block into its constituent singular vectors 

and singular values, facilitating targeted modifications 

with minimal perceptual impact. 

1. SVD Decomposition 

For each image block 𝐵, SVD is performed as follows: 

𝐵 = 𝑈Σ𝑉𝑇 (16) 

where:  

- 𝑈 is a 4 × 4 orthogonal matrix of left singular vectors.  

-  Σ is a 4 × 4 diagonal matrix containing singular 

values σ1 ≥ σ2 ≥ σ3 ≥ σ4 ≥ 0.  

-  𝑉 is a 4 × 4 orthogonal matrix of right singular 

vectors. 

2. Data Embedding Procedure 

The embedding process targets the least significant 

singular value σ4 to encode binary data, capitalizing on its 

minimal influence on the visual integrity of the image 

block. The procedure entails the following steps: 

- Binary Data Segmentation: The hidden message is 

converted into a binary sequence, with each bit 

corresponding to a modification in σ4. 

- Singular Value Perturbation:  

Bit ’0’ Embedding: If the bit to embed is ’0’, σ4 remains 

unaltered. 

Bit ’1’ Embedding: If the bit is ’1’, a small perturbation 

Δ is added to σ4: 

σ4
′ = σ4 + Δ (17) 

The perturbation Δ is carefully calibrated to ensure that 

the alteration is imperceptible while maintaining data 

integrity. 

3. Block Reconstruction 

The modified singular value matrix Σ′ is utilized to 

reconstruct the stego-image block 𝐵′ = 𝑈Σ′𝑉𝑇 

4. Block Replacement 

The original image block 𝐵 is replaced with the stego-

image block 𝐵′ in the overall image matrix. 

 

D. Data Extraction Using Singular Value 

Decomposition 

The extraction of hidden data necessitates the reversal of 

the embedding process, wherein the singular values of the 

stego-image blocks are analyzed to retrieve the embedded 

binary sequence. 

1. SVD Decomposition for Extraction 

For each stego-image block 𝐵′, SVD is performed to 

obtain the 𝐵′ = 𝑈′Σ′𝑉′𝑇  

2. Data Extraction Procedure 

- Singular Value Analysis: The least significant singular 

value σ4′ is examined to determine the embedded bit. 

- Bit Determination: 

Bit ’0’ Identification: If σ4′ remains unchanged or 

exhibits negligible perturbation, the corresponding bit 

is inferred as ’0’.  

Bit ’1’ Identification: If a significant increase is 

detected in σ4′, the bit is inferred as ’1’. 

- Binary Sequence Reconstruction: The extracted bits are 

concatenated to reconstruct the original hidden 

message. 

E. Image Assembly and Post-processing 

Following the embedding or extraction of data within 

individual blocks, the image undergoes assembly and post-

processing to restore its original dimensions and format.  

1. Image Reconstruction 

The modified   blocks are systematically recombined to 

form complete stego-image matrix 𝐼′. Care is taken to 

ensure that the block alignment preserves the spatial 

coherence of the image. 

2. De-padding 

If padding was applied during preprocessing, it is 

subsequently removed to revert the image to its original 

dimensions. This ensures that the stego-image maintains 

consistency with the host image’s spatial properties. 

3. Format Conversion 

The stego-image is saved in the desired format 

(currently only supports TIFF), with considerations for 

preserving image quality and embedded data integrity. 

Lossless format is a must to prevent data degradation. 
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F. Image Assembly and Post-processing 

The methodology emphasizes balancing data 

embedding capacity with robustness against image 

processing operations. By confining data embedding to 

ROIs and targeting the least significant singular values, the 

framework ensures maximal data concealment with 

minimal perceptual distortion. 

1. Capacity Analysis 

The embedding capacity is determined by the number of 

available singular values within the identified ROIs. 

Specifically, each 4 × 4 block facilitates the embedding of 

one bit per color channel, yielding a cumulative capacity 

proportional to the number of blocks and color channels 

within the ROIs. 

 

 

IV.   ALGORITHM AND IMPLEMENTATION 

The system integrates object detection using YOLOv8 

to identify Regions of Interest (ROIs) within an image, 

followed by image preprocessing, data embedding, and 

data extraction using Singular Value Decomposition 

(SVD). The implementation is executed in Python, 

leveraging essential libraries such as NumPy, OpenCV, 

Ultralytics YOLOv8, Pillow, and tifffile. Each component 

is comprehensively detailed through corresponding code 

snippets and thorough explanations to elucidate the 

operational workflow. 

 

A. Object Detection for Region of Interest 

Identification 

The initial phase of the implementation involves 

detecting objects within the input image to identify ROIs 

where hidden data will be embedded. YOLOv8, renowned 

for its precision and real-time performance, is employed to 

accurately delineate object boundaries, ensuring that data 

embedding is confined to relevant and visually significant 

regions. 
from ultralytics import YOLO 

import numpy as np 

 

model = YOLO('yolov8n.pt') 

 

def detect_objects(image_path, target_class): 

 results = model(image_path) 

 detections = [] 

 for result in results: 

  for box in result.boxes: 

   cls_id = int(box.cls[0]) 

   cls_name = model.names.get(cls_id, "Unknown") 

   if cls_name.lower() == target_class.lower(): 

    x1, y1, x2, y2 = box.xyxy[0].cpu().numpy() 

    detections.append({ 

     'class': cls_name, 

     'x1': int(x1), 

     'y1': int(y1), 

     'x2': int(x2), 

     'y2': int(y2) 

    }) 

 return detections 

The detect_objects function leverages the YOLOv8 

model to perform object detection within the input image. 

Upon initializing the pre-trained YOLOv8 model 

(yolov8n.pt), the function processes the image specified by 

image_path. It iterates through the detection results, 

filtering objects that match the specified target_class. For 

each detected object, the function extracts the bounding 

box coordinates (x1, y1, x2, y2) and compiles them into a 

list of dictionaries. This list represents the ROIs where data 

embedding will subsequently occur. Utilizing YOLOv8's 

high accuracy in object detection ensures that data 

embedding is confined to relevant and visually significant 

regions, enhancing both the capacity and imperceptibility 

of the steganographic process. 

 

B. Image Preprocessing 

Post object detection, the identified ROIs undergo 

preprocessing to facilitate seamless data embedding. This 

involves padding the image to align with the block size 

requirements and dividing the image into non-overlapping 

blocks for localized processing. 

1. Padding the Image 

To ensure compatibility with block-wise processing, the 

image is padded such that both its height and width are 

multiples of the block size (e.g. 4 × 4 pixels). This 

uniformity prevents boundary discrepancies that could 

complicate data embedding and extraction. 
def pad_to_multiple_of_block(image, 

block_size=4): 

height, width = image.shape[:2] 

new_height = math.ceil(height / block_size) * 

block_size 

new_width = math.ceil(width / block_size) * 

block_size 

 

if len(image.shape) == 3: 

 padded_image = np.zeros((new_height, new_width, 

image.shape[2]), dtype=image.dtype) 

else: 

 padded_image = np.zeros((new_height, 

new_width), dtype=image.dtype) 

 

padded_image[:height, :width] = image 

return padded_image 

The pad_to_multiple_of_block function ensures that the 

input image's dimensions are divisible by the specified 

block_size. It calculates the necessary new dimensions by 

rounding up the original height and width to the nearest 

multiple of the block size using the ceiling function. 

Depending on whether the image is grayscale or color 

(determined by the number of dimensions), the function 

initializes a new array filled with zeros (representing black 

pixels) to accommodate the padded dimensions. The 

original image data is then copied into the top-left corner 

of this array, effectively adding the required padding 

without altering the original content. This preprocessing 

step is fundamental in maintaining the structural integrity 

of the image during the embedding process. 

2. Dividing the Image into Blocks 

Following padding, the image is segmented into non-

overlapping blocks of size 4 × 4 pixels. This division 

facilitates localized data embedding and extraction, 
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minimizing the risk of global distortions. 
def divide_into_blocks(image, block_size=4): 

 height, width = image.shape[:2] 

 blocks = [] 

 for i in range(0, height, block_size): 

  for j in range(0, width, block_size): 

   block = image[i:i+block_size, j:j+block_size] 

   blocks.append(((i, j), block)) 

 return blocks, height, width 

The divide_into_blocks function systematically 

partitions the padded image into smaller, manageable 

blocks of 4 × 4 pixels. Iterating over the image dimensions 

in increments defined by the block_size, the function 

extracts each block and records its top-left coordinates. 

This organization is pivotal for mapping each block to its 

corresponding location within the image, thereby 

facilitating accurate data embedding and extraction. By 

focusing on these discrete blocks, the system can perform 

localized SVD operations, embedding data in a manner that 

minimizes disruption to the overall visual integrity of the 

image. 

 

C. Data Embedding Using Singular Value 

Decomposition (SVD) 

The embedding process utilizes SVD to decompose each 

4 × 4 image block into singular vectors and singular 

values. Hidden data is then embedded by modifying the 

least significant singular values, ensuring minimal 

perceptual impact. 

1. Embedding Data into ROIs 

To embed the entire hidden message, the system iterates 

through each block within the identified ROIs, embedding 

corresponding bits sequentially. 
def encode_message(image_path, message): 

 I = 

np.array(Image.open(image_path).convert('RGB')) 

 I_padded = pad_to_multiple_of_block(I) 

 I2 = I_padded.astype(np.float64) / 255.0 

 

 M = message 

 lm = len(M) 

 MNum = [ord(char) for char in M] 

 MNumFinal = [format(num, '08b') for num in 

MNum] 

 

 Emp = [] 

 for a in range(lm): 

  for b in range(8): 

   Emp.append(MNumFinal[a][b]) 

 Emp.append('2')  # End marker 

 

 height, width = I2.shape[:2] 

 encoded = np.copy(I2) 

 

 isBreaking = False 

 idx = 0 

 

 for i in range(1, height // 4 + 1): 

  for j in range(1, width // 4 + 1): 

   for channel in range(3): 

    block = I2[4*i-4:4*i, 4*j-4:4*j, channel] 

 

    if block.shape[0] != 4 or block.shape[1] != 

4: 

     continue 

 

    U, s, VT = np.linalg.svd(block) 

    S = np.zeros((4, 4)) 

    np.fill_diagonal(S, s) 

 

    if idx < len(Emp): 

     if Emp[idx] == '1': 

      S[3, 3] = 0 

     elif Emp[idx] == '0': 

      if s[3] <= 1e-6: 

       S[3, 3] = s[2] / 5 

       if s[2] <= 1e-6: 

        S[2, 2] = s[1] / 5 

        S[3, 3] = S[2, 2] / 5 

        if s[1] <= 1e-6: 

         S[1, 1] = s[0] / 5 

         S[2, 2] = S[1, 1] / 5 

         S[3, 3] = S[2, 2] / 5 

     elif Emp[idx] == '2': 

      isBreaking = True 

      break 

 

     A = U @ S @ VT 

     encoded[4*i-4:4*i, 4*j-4:4*j, channel] = A 

 

    idx += 1 

   if isBreaking: 

    break 

  if isBreaking: 

   break 

 

 encoded_cropped = encoded[:I.shape[0], 

:I.shape[1]] 

 encoded_cropped = np.clip(encoded_cropped, 0, 

1.0) 

 return encoded_cropped, I.shape[:2] 

The encode_message function orchestrates the 

embedding of a hidden textual message within the host 

image using SVD-based steganography. Initially, the 

function loads the input image and normalizes its pixel 

values to the [0,1] range, ensuring numerical stability 

during SVD operations. The message is then converted into 

its binary representation, with each character translated 

into an 8-bit binary sequence. An end marker ('2') is 

appended to signify the termination of the embedded 

message during extraction. 

The function proceeds to iterate over each 4 × 4  block 

and each colour channel (Red, Green, Blue) within the 

image. For each block, Singular Value Decomposition 

(SVD) is performed, decomposing the block into its 

singular vectors and singular values. The least significant 

singular value (σ4) is then modified based on the current 

bit of the binary message: 

- Bit '1': To embed a bit '1', the function sets the least 

singular value (S[3,3]) to zero. This modification 

encodes the bit within the block's singular value 

structure. 

- Bit '0': Embedding a bit '0' involves a hierarchical 

adjustment. If the current least singular value (s[3]) is 

below a threshold (1 × 10-6), it is modified by scaling 

down the preceding singular values. This process 

propagates upwards to maintain a balance between 

embedding capacity and perceptual quality. If the 

singular values are already low, further scaling ensures 

that the image's visual integrity remains intact. 

If the end marker ('2') is encountered, the embedding 

process is terminated to prevent over-embedding. After 

modifying the singular values, the block is reconstructed 

using the altered singular value matrix and reassigned to its 
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original position within the image array. This process 

continues sequentially for each bit in the binary message 

until the entire message, including the end marker, is 

embedded. Finally, the function crops the image back to its 

original dimensions, removing any padding added during 

preprocessing, and ensures that all pixel values remain 

within the valid [0,1] range. The result is an encoded image 

array with the hidden message seamlessly embedded 

within its singular values. 

 

D. Data Extraction Using Singular Value 

Decomposition (SVD) 

The extraction process reverses the embedding 

procedure, retrieving the hidden message by analyzing the 

least significant singular values of the stego-image blocks 

within the ROIs. 

1. Extracting Data from ROIs 

To retrieve the hidden message, the system iterates 

through each block within the ROIs, decoding 

corresponding bits sequentially. 
def decode_message(encoded_image): 

 height, width = encoded_image.shape[:2] 

 NewM = [] 

 

 for i in range(1, height // 4 + 1): 

  for j in range(1, width // 4 + 1): 

   for channel in range(3): 

    block = encoded_image[4*i-4:4*i, 4*j-4:4*j, 

channel] 

    if block.shape[0] != 4 or block.shape[1] != 

4: 

     continue 

 

    _, s, _ = np.linalg.svd(block) 

    if np.abs(s[3]) <= 2e-7 - 5e-8: 

     NewM.append('1') 

    else: 

     NewM.append('0') 

 

 message = "" 

 invalid_count = 0 

 

 for k in range(0, len(NewM) - 7, 8): 

  try: 

   b = ''.join(NewM[k:k+8]) 

   a = int(b, 2) 

   l = chr(a) 

    

   if (not l.isprintable() or not (32 <= a <= 

126)) and a != 10: 

    invalid_count += 1 

    if invalid_count >= 3: 

     break 

   else: 

    invalid_count = 0 

    message += l 

  except: 

   break 

 

 return message 

The decode_message function is designed to reverse the 

embedding process, extracting the hidden message from 

the stego-image by analyzing the least significant singular 

values of each 4 × 4   pixel block. The function begins by 

determining the dimensions of the encoded image and 

initializing an empty list (NewM) to accumulate the binary 

message. 

Iterating over each block and each color channel, the 

function performs SVD on the block to obtain its singular 

values. The least significant singular value (σ4) is then 

scrutinized to determine the embedded bit: 

- Bit '1': If the absolute value of 𝜎4 is below a predefined 

threshold (2 × 10-7 − 5 × 10-8), the function infers 

that a bit '1' was embedded. 

- Bit '0': Otherwise, it deduces a bit '0'. 

This binary sequence (NewM) accumulates 

progressively as the function traverses the entire image. 

Once the binary message is fully extracted, the function 

processes it in chunks of 8 bits to reconstruct individual 

characters. It converts each byte into its corresponding 

ASCII character and checks for the end marker 

('00000010'), which signifies the termination of the 

embedded message. The function employs an 

invalid_count mechanism to detect consecutive invalid 

characters, ensuring that the extraction process halts 

appropriately to prevent the inclusion of corrupted or 

unintended data. The resultant message string is then 

returned, effectively recovering the original hidden 

information embedded within the stego-image. 

 

E. Data Extraction Using Singular Value 

Decomposition (SVD) 

Efficient image saving and loading are critical to 

preserving data integrity and ensuring seamless embedding 

and extraction processes. The implementation supports 

both TIFF format. 

1. Saving the Image 

The save_image function handles the export of processed 

images to disk in the desired format, ensuring that 

embedded data remains intact and that image quality is 

preserved. 
from PIL import Image 

import tifffile 

 

def save_image(image, path, format="TIFF"): 

 if format.upper() == "TIFF": 

  try: 

   with open('sRGB.icc', 'rb') as f: 

    icc_profile = f.read() 

  except FileNotFoundError: 

   icc_profile = b'' 

 

  image_float32 = image.astype(np.float32) 

 

  ICC_TAG_ID = 34675 

  if icc_profile: 

   icc_tag = (ICC_TAG_ID, 7, len(icc_profile), 

icc_profile, True) 

   extra_tags = [icc_tag] 

  else: 

   extra_tags = [] 

 

  with tifffile.TiffWriter(path, bigtiff=False) 

as tiff_writer: 

   tiff_writer.write( 

    image_float32, 

    photometric="rgb", 

    extratags=extra_tags, 

   ) 

The save_image function is responsible for persisting the 

processed image arrays to disk, based on user preference or 
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application requirements. For TIFF format, the function 

attempts to embed the ICC profile (color profile) to 

preserve accurate color representation. If the ICC profile 

file (sRGB.icc) is not found, it proceeds without it, 

ensuring that the image saving process remains robust. The 

image array is cast to float32 to maintain high precision, 

which is particularly important for preserving subtle 

modifications in the singular values that encode the hidden 

message. The tifffile library's TiffWriter is employed to 

write the image data, specifying the photometric 

interpretation as RGB to correctly represent color 

information. This approach ensures that the stego-image 

retains its integrity and that the embedded data remains 

intact during storage, facilitating reliable extraction in 

subsequent operations. 

2. Loading the Image 

The load_image function facilitates the retrieval of 

images from disk, preparing them for embedding or 

extraction operations. This function supports both PNG 

and TIFF formats. 
def load_image(path): 

 if path.lower().endswith('.tiff') or 

path.lower().endswith('.tif'): 

  return tifffile.imread(path) 

 else: 

  image = Image.open(path).convert('RGB') 

  return np.array(image).astype(np.float64) / 

255.0 

The load_image function is designed to import images 

from the filesystem, converting them into a standardized 

format suitable for further processing in the embedding or 

extraction pipelines. When dealing with TIFF files, the 

function leverages the tifffile.imread method to accurately 

read multi-dimensional data, which is essential for high-

fidelity stego-images that may contain intricate embedded 

information. The pixel values are then cast to float64 and 

normalized to the [0,1] range, ensuring consistency with 

the preprocessing steps used during embedding. 

For other image formats, such as PNG, the function 

utilizes PIL to open and convert the image to RGB format, 

facilitating uniform handling of color channels. The image 

data is subsequently converted into a NumPy array and 

normalized to the [0,1] range, aligning with the numerical 

requirements of the SVD-based embedding and extraction 

processes. This normalization is critical for maintaining the 

integrity of the embedded data and ensuring accurate 

reconstruction during extraction. 

 

E. Reconstructing the Stego-Image and Retrieving 

Hidden Data 

After embedding, the system reconstructs the stego-

image by aggregating the modified blocks and ensuring the 

image retains its original dimensions and format. 

Conversely, during extraction, the system retrieves the 

hidden message by analyzing the reconstructed binary 

sequence. 

1. Reconstructing and Saving the Stego-Image 

The reconstruct_and_save_stego_image function 

finalizes the stego-image by cropping it to its original 

dimensions and saving it in the desired format. 
def 

reconstruct_and_save_stego_image(encoded_image, 

original_dims, save_path='stego_image.png', 

format='PNG'): 

 encoded_cropped = 

encoded_image[:original_dims[0], 

:original_dims[1]] 

 encoded_cropped = np.clip(encoded_cropped, 0, 

1.0) 

  

 stego_image_uint8 = (encoded_cropped * 

255).astype(np.uint8) 

  

 stego_image = 

Image.fromarray(stego_image_uint8) 

 stego_image.save(save_path, format=format) 
The reconstruct_and_save_stego_image function 

finalizes the stego-image by cropping the encoded image 

array back to its original dimensions, removing any 

padding that was added during preprocessing. It ensures 

that all pixel values are clamped within the valid [0,1] 

range to maintain image integrity. The function then scales 

the normalized pixel values back to the [0,255] range and 

converts the data type to uint8, which is compatible with 

standard image formats. Utilizing the PIL library, the 

function creates an image object from the NumPy array and 

saves it in the specified format (e.g., PNG). This stego-

image now contains the embedded hidden message within 

its specified ROIs, ready for storage or transmission. 

2. Retrieving the Hidden Message 

The retrieval process utilizes the previously defined 

extraction functions to decode the hidden message from the 

stego-image. 
def retrieve_hidden_message(stego_image_path, 

rois, block_size=4): 

 stego_image = load_image(stego_image_path) 

 extracted_message = decode_message(stego_image) 

 return extracted_message 

The retrieve_hidden_message function serves as the 

entry point for extracting the hidden message from a stego-

image. It begins by loading the stego-image using the 

load_image function, which normalizes the image data and 

prepares it for analysis. The function then invokes the 

decode_message function, passing the loaded image and 

the list of ROIs to retrieve the embedded message. This 

modular approach ensures that each component of the 

extraction process operates cohesively, facilitating 

accurate and efficient retrieval of the concealed 

information. The final output is the reconstructed hidden 

message, effectively demonstrating the system's capability 

to securely embed and extract data within digital images. 

 

 

V.   EXPERIMENT RESULT 

The experiments focus on visually demonstrating the 

system's capability to embed and accurately retrieve hidden 

messages within identified Regions of Interest (ROIs) 

while maintaining the visual integrity of the host images 

and quantitatively evaluate the embedding capacity. 
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A. Detection of Regions of Interest (ROIs) 

The initial step involves detecting objects within the 

input images to identify ROIs suitable for data embedding. 

Utilizing YOLOv8, the system successfully identifies and 

outlines target objects, ensuring that data embedding is 

confined to relevant and visually significant areas. 

 
Figure 5.1 Detected ROI Image 

 

B. Embedding Process: Before and After 

The embedding process modifies the identified ROIs to 

conceal the hidden message. For this experiment, the 

hidden message is this: 

test this is SECRET message for Mr. Rinaldi Munir and 

Mr. Rila Mandala 

Sincere thanks are extended to the lecturers of ITB's 

Linear Algebra and Geometry IF2123 course, Mr. Rinaldi 

Munir and Mr. Rila Mandala 

algeo2425{k3r3n_s3K4l1} 

Below are visual comparisons of an image before and 

after the embedding process, demonstrating the system's 

ability to maintain the host image's visual quality. 

 
Figure 5.2 Original Image Before Embedding 

 
Figure 5.3 Image After Embedding Hidden Data 

 

C. Visual Inspection 

To assess the imperceptibility of the embedded data, 

zoomed-in sections of the ROIs are examined. These close-

up views reveal minimal to no visible artifacts, confirming 

that the embedding process does not introduce noticeable 

defects from normal view. 

 
Figure 5.4 Zoomed-In View on Defected Area 

A small defect can be seen as a weird 4 × 4 pixels spot. 

This defect is a result of modifying the block with a 

relatively high σ4 value such that a modification can 

result in noticeable output. 

 

D. Extraction and Verification of Hidden Data 

This involves extracting the hidden message from the 

stego-image and verifying its accuracy against the original 

message. The extracted message is displayed on the screen. 

 
Figure 5.5 Result of The Detected ROI and Extracted 

Data 

Extracted Message: 

test this is SECRET Eessage for Mr. Rinaldi Munir 

and Mr. Rila Mandala 

Sincere thanks are extended to the lecturers of ITB's 
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Linear Algebra and Geometry IF2123 course, Mr. 

Rinaldi Munir and Mr. Rila Mandala 

algeo2425{k3r3n_s3K4l1} 

The extracted message matches the original exactly, 

confirming the effectiveness of the embedding and 

extraction processes. 

 

E. Embedding Capacity 

The table below summarizes the image resolutions, 

corresponding ROI sizes, and the embedding capacities 

achieved during the experiments. It demonstrates that 

higher-resolution images with larger ROIs allow for 

embedding a greater number of characters, enhancing the 

system's capacity to conceal more information. 

Conversely, smaller ROIs in lower-resolution images 

result in reduced embedding capacity, highlighting the 

system's adaptability based on image and ROI dimensions. 

TABLE 1 

Summary of Image Resolutions, ROI Sizes, and 

Embedding Capacities. 

Image 

Resolution 

(Pixels) 

ROI Size 

(Pixels) 

Embedding 

Capacity 

(Characters) 

480 x 640 408 x 336 3,213 

480 x 640 264 x 228 1,410 

833 x 658 96 x 192 432 

1,200 x 1,200 684 x 1,044 16,736 

 

 

VI.   CONCLUSION 

This study successfully developed an image 

steganography system that integrates Singular Value 

Decomposition (SVD) with YOLOv8 for identifying 

Regions of Interest (ROIs) within images. By leveraging 

YOLOv8's precise object detection capabilities, the system 

effectively targets specific areas for data embedding, 

ensuring that hidden messages are concealed without 

compromising the visual quality of the host images. 

The experimental results demonstrate the system's 

ability to embed and accurately retrieve hidden messages 

with minimal perceptual impact. Visual inspections 

confirmed that the stego-images maintained high fidelity, 

with no noticeable artifacts, while the extraction process 

reliably recovered the embedded information. This 

highlights the effectiveness of combining advanced object 

detection with matrix decomposition techniques for secure 

and imperceptible data concealment. 

While the system shows strong performance in 

controlled environments, future work could explore 

enhancing embedding capacity and robustness against 

more sophisticated image manipulations. Additionally, 

integrating encryption methods could further secure the 

concealed data, providing an extra layer of protection. 

Overall, the integration of YOLOv8 and SVD presents a 

promising approach to advancing the field of image 

steganography. 

 

 

VII.   APPENDIX 

The source code for the implementation discussed in this 

paper is available at the following GitHub repository: 

https://github.com/l0stplains/Steganography-ROI-SVD 
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